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Introduction 
The automotive electronics market is characterised by high volume, high reliability and a 
supply chain that is in the ruthless pursuit of driving costs down. Any electronics that makes 
its way into a vehicle platform of even the most modest volumes, no matter the end user or 
the function, will have been custom designed, with a focus on cost optimization of the software 
and hardware components while still maximising performance and ensuring safety. This is the 
automotive embedding challenge.  

High Performance Embedding is a technical discipline that Seeing Machines takes as 
seriously as algorithms or optics and we recognize it as the key to product scalability. After all, 
having industry-best algorithms and optical solutions means little if the ability to execute those 
algorithms comes at a prohibitive cost. 

It was five to six years ago that camera based Driver Monitoring Systems (DMS) first entered 
into the common lexicon within automotive circles. By industry timelines, where programs 
typically take three or more years to execute, this is akin to the blink of an eye. With these 
timescales in mind, we highlight how suboptimal SoC products (that also take multiple years 
to develop) have been attempting to serve the DMS market with designs that have not 
benefited from the foresight and detailed knowledge of how DMS and (more recently) OMS 
(Occupant Monitoring Systems) solutions need to work. 

In this paper, we reflect on some of the challenges that we have faced in the embedding 
discipline, and discuss our strategic approach (including our motivation and approach) to our 
Occula NPU design.  
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Automotive DMS and OMS Overview 
The design challenge in any embedded system within the context of the automotive market, 
including the monitoring of drivers, occupants or complete cabins (which we call throughout 
this paper as DMS), is multifaceted and complex.  

The automotive industry arguably has the largest and most complex supply chains of any 
industry. As such, market forces demand that suppliers deliver continual improvements in 
performance while continually reducing prices and adhering to some of the most demanding 
environmental and safety requirements of any industry. Given the volumes at stake, cost 
pressures are extreme and ultimately the sales price becomes the primary driver of what 
features or functions are “affordable” in embedded systems. Put simply, every cent matters, 
and those solutions that can embed and process the needed functions with the required key 
performance indicators (KPIs) using less processing resources, and therefore lower cost, will 
always have a market advantage. 

This cost-first industry dynamic isn’t a new phenomenon. Embedding software in automotive 
electronics has always entailed walking a tightrope when it comes to the processing resources 
available for the task at hand. Whilst the need for upgradability (reprogrammability) and 
emerging subscription services may disrupt and change this dynamic somewhat, there will 
always be a strong cost versus performance pressure associated with the act of embedding 
any function into a vehicle. Seeing Machines refers to this dynamic as “Just Good Enough 
Processing” (JGEP) and it underpins our philosophy and our approach to the embedding 
discipline. To achieve JGEP requires a deep understanding of the target silicon architecture - 
warts and all. 

Before diving in further, we’ll define some key terms and categories in this section, which are 
used throughout the paper. By “embedded system” we mean a module that performs a 
carefully specified and dedicated function, and which contains a sophisticated computer 
system. The hardware and mechanics of an embedded system are almost always bespoke 
and must be customized to some extent to meet unique requirements of a vehicle design (e.g. 
housing enclosure, sensors, processors, volatile and non-volatile memories, actuators, power 
and thermal management, etc.). The software in an embedded system is carefully targeted at 
the underlying hardware so as to optimally implement the features required of the overall 
module. 

An embedded “processing pipeline” refers to a decomposition of the overall algorithms into 
sequential stages. Achieving a smooth flow of data down the pipeline is the goal of embedded 
optimization. In its simplest form, the pipeline can be “software-only”, where the only 
optimisation work required may be no more than experimenting with the settings of the 
compiler, or perhaps writing some handcrafted assembly code to make particular inner loops 
of the program more efficient. In automotive embedded systems that contain DMS functionality 
(and indeed in all advanced computer-vision systems in cars), it is fair to say that there is 
almost always the need to accelerate stages of the pipeline using specialist processor designs. 
This isn’t because regular CPUs aren’t capable of executing the pipeline, but simply because 
the CPU resources made available are almost never sufficient (due to cost) and because there 
are usually far more efficient ways of executing specialized types of functions, including image 
pre-processing (e.g. denoise, dewarp), computer-vision operators (e.g. template matching, 
optical flows), signal processing (e.g. kalman filters), and neural networks such as regressors 
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and classifiers. The prevailing idea that any DMS supplier is able to offer highly compute-
intensive product solutions in a software-only form, and be agnostic to the architectural 
differences in industry leading System-on-Chips (SoCs), whilst also being commercially 
competitive, is a fallacy.  

Specific to DMS, the automotive industry is also grappling with other challenges that impact 
the embedding problem. In particular, the physical location of the optical sensing components 
(typically image sensors, lenses and illumination pods) along with other factors such as new 
regulatory demands imposed in Europe and other jurisdictions. All of these factors influence 
and skew a vehicle OEM’s typical “technology introduction” playbook, where emerging 
technologies (such as DMS) are carefully staged and controlled by the OEM in order to 
manage risk.  

OEMs typically introduce new technologies as “standalone” systems (as in a single-purpose 
system in a box with its own dedicated ECU). The technology and supply chain is matured 
and optimized first; then in later generations the OEMs begin to push for “integration” with 
other systems. This stage is driven by the insatiable desire to optimize cost, power, weight 
and other variables that fundamentally affect the making of a car. 

These are not new phenomena - the age-old question of Integrated versus Standalone for a 
given function is actually a swinging pendulum. Some OEMs push hard towards integration 
as quickly as possible. Others wait for the industry to commoditise the technology and iron out 
integration issues (and costs). The picture in Figure 1 highlights the main landing points of 
DMS systems (optics and/or processing) within a vehicle. 

 

 

Figure 1: Overview of landing points for DMS Processors and Optics 

Where exactly in a vehicle DMS ultimately ends up landing (including the processing 
component) will continue to play out over this decade. What appears certain, however, is that 
there will be a healthy balance between standalone and integrated solutions during this time 
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(perhaps equally split between the two), and not all OEMs will pursue the same strategy when 
deciding which path to take for their vehicle lines.  

It is also important to keep in mind that bodies like the Euro NCAP (New Car Assessment 
Program) and other regulatory groups around the world are now requiring DMS technology 
incorporation into new vehicles as soon as 2023. This is a regulatory trajectory that appears 
akin to other safety systems ranging from airbags and seatbelts to select advanced driver 
assistance systems (ADAS). The complexity of DMS combined with the regulatory timing 
demand, places immense pressure on those OEMs that have not completed their typical first 
phase of understanding and commoditization. These companies will be forced to adopt a “fast 
follower” approach, duplicating systems that “tick the box” of DMS regulatory requirements. 
This is creating a wave of OEM demand for standalone DMS solutions due to the simpler 
engineering and reduced timing risk when needing to incorporate DMS into a large number of 
vehicle lines. Given this market dynamic, the volume of modules expected and the “automotive 
jungle” where all possible solutions compete for survival - SoCs that target DMS standalone 
solutions are fast becoming an absolute necessity. 
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Standalone Systems: The Embedded Battleground 
DMS products are inherently high performance, real-time computing systems. From a 
processing perspective, video is pushed into a pipeline which operates on the continuous 
stream of pixels, in a series of stages, where hierarchies of interconnected algorithms (or a 
DMS “engine”) squeeze out and extract desired information from the image data, passing 
higher-order information from one stage to the next, until what is produced is a low-bandwidth 
set of high-level (and high-value) results, such as where the driver is looking and if they are 
distracted or impaired. These results are then transmitted out of the DMS module into the 
vehicle environment for consumption by any number of downstream modules (e.g. a wider 
system of ADAS modules or some form of automated driving system).  

Whilst the engineering methods applied when embedding a DMS engine into any target SoC 
follow the same set of general steps, the risks can be very different based on the specifics of 
the processor. As a general rule, processors used in standalone systems are lower cost, 
smaller and far less capable than those in integrated systems. Standalone processors are 
considered a far riskier embedded target because of “hard limits” commonly encountered with 
these types of processors. The graph in Figure 2 below shows the theoretical maximum CPU 
and memory bandwidth capabilities of five SoCs: four of which are targeted at the standalone 
use-case and the fifth being targeted at integrated solutions. Even though there is a wide 
spectrum of processors available, those in the integrated class simply have far more compute 
resources as they are required to do a lot more than execute DMS workloads. 

 

Figure 2: Standalone versus Integrated SoC processing resources 

The reason that embedding into a standalone targeted processor is riskier is quite simple - 
SOCs targeted at integrated solutions have many more “design levers” and far more CPU 
cores, co-processors and memory bandwidth than those targeted at standalone solutions. In 
our experience, they can be anywhere from five to twenty times more powerful than what is 
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required to implement a real-time DMS system. Hence, if there are issues encountered when 
embedding the DMS function into an integrated solution, then there is almost always a way to 
“shuffle” around execution aspects in order to better balance resource demands and free 
critical compute resources for the pipeline. In contrast, standalone systems have just enough 
resources to do a single job - rarely more.  

For standalone systems, in the event that a pipeline cannot be mapped to the silicon efficiently 
(which in our experience is very common), there is really no other option but to move to a 
bigger, and therefore more expensive processor (or for the algorithm's processing rate, and 
consequent performance, to not only suffer but to suffer unpredictably). More often than not, 
it is impossible to move to another processor because it's either discovered too late in a project 
or it's simply not commercially viable. This situation can easily end with all parties running out 
of time and the DMS software team being forced to find non-existent ways of fitting the 
processing into the SoC, and the OEM integration team ultimately being severely disappointed 
while having to scale back their expectations for any features that depend on the DMS output 
results. 

This dynamic places a lot of pressure on the embedding process and creates a high stakes 
game when estimating and mapping pipelines to target chips confidently in advance. The 
starting point, from our perspective, is to ensure that we are working with chips that are 
compatible with our pipelines, as we know from experience that not all chips are built equally 
(even if the specifications on paper look indistinguishable). This requires a deep understanding 
of our algorithms, our dataflows and the target chip architectures. 

DMS-Oriented Chip Architecture 
Today, the DMS embedded processing market is at a fork in the road. Up until very recently, 
the chips that have been targeted at DMS never anticipated an optimal processing pipeline or 
the specific operations that a DMS workload needs. Instead, the devices being offered for 
standalone DMS processing appear to be repurposed devices originally targeted at outward 
facing vision processing pipelines and are sub-optimally matched to the nature of processing 
required to search and track human bodies (particularly faces, eyes, hands and torsos). 

Our view is that DMS-oriented chips require the following architectural traits:  

(i) Sufficiently powerful CPU cores (usually two or more) with vector extensions and shared 
L2 cache (typically 256 KB or larger),  

(ii) Optimised video capture and ISP pipeline that never-ever tax the system memory 
bandwidth,  

(iii) Well matched accelerator(s) to the algorithmic tasks at hand,  

(iv) Essential I/O peripherals for connecting to vehicle interfaces as well as controlling 
functions like illumination, and  

(v) Functional safety plus cybersecurity built in from the ground up for all relevant subsystems 
(e.g. secure bootflow, biometric data protection and comprehensive soft-error mitigation). 
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Current devices in the market that are targeted at standalone DMS applications do not 
possess all of the aforementioned traits. There is typically a shortfall in at least one of these 
traits that make it very challenging to develop a superior DMS solution. Many existing devices 
lack anticipated advances in image sensor technologies - particularly RGB-IR imagers. The 
typical comment by most chip makers to the issue of RGB-IR sensors is that “Our Image Signal 
Processor (ISP) is capable of handling all necessary RGB-IR image operations”. While that is 
a technically defensible statement, when we study the problem in the next section we will 
illustrate that there are many pitfalls around RGB-IR sensors which can easily trap DMS 
product developers. 

 

Memory Bandwidth - A Precious Resource 
Semiconductor companies and the powerful marketing machinery at their disposal will try to 
have engineers, architects and other users of their chips believe that it's all about the number 
of DMIPS that the CPUs achieve, the number of TOPS that the NPU (or perhaps a DSP 
accelerator) is capable of, and the feature-rich capabilities of the “all singing and dancing” ISP. 
But what about concurrency? It all sounds great until you start using these SoCs and quickly 
realize that while the lowest cost devices can do what the vendor says, they can only do one 
feature at a time due to overall SOC architectural limitations. “Real world” concurrent feature 
requirements quickly become unaffordable as a result of being forced into devices with higher 
processing performance. These performance issues, especially in the smaller chips (i.e. the 
devices used in standalone DMS applications), are often not due to the primary resources 
such as the CPU or an accelerator, but rather the memory subsystem being saturated with 
the compute resources being starved of data when attempting to run many features 
concurrently. Whether or not it's running out of processing cycles or memory bandwidth, the 
end result is the same - the real-time pipeline stalls and misses the targeted deadline for 
delivering DMS results. 

For memory specifications, chipmakers usually state the external device type and speed in 
their datasheets, and often the raw theoretical (but unachievable) maximum bandwidth 
numbers and leave it at that. Memory is the neglected, unsexy commodity resource that 
doesn’t allow for any product differentiation, and therefore is rarely focused on early in the 
device selection process. The reality of embedded systems is that crucial secondary resources 
such as memory bandwidth can often be more important than the total throughput of the CPU 
or the capabilities of any accelerator.  

Most important, however, are the subtle details of the chip architecture with all the potential 
ways that data can be moved around the chip and possibly buffered along the way with internal 
on-chip memory. The art of efficient embedding on a given chip for a processing pipeline in 
many ways is about minimizing the need to move data around and access the same data more 
than once. Equally, the art of good chip design is to make sure that the processing data-paths 
are clearly defined so that the chip enables the developer to minimise the use of critical 
resources such as external memory. This dynamic looms large on the horizon as chips 
become smaller and more resource constrained, since memory is limited both on and off the 
chip. Therefore inefficient pipelines and chip bottlenecks get exposed very quickly. 
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Case-Study - RGB-IR Preprocessing  
RGB-IR imagers are new to the automotive market and stem from the familiar OEM desire to 
optimize and reduce cost. Which is to say, why have two image sensors when you can have 
one? 

RGB-IR imagers allow one sensor to create two separate video streams in both visible-light 
(RGB) and narrowband infrared (IR). The RGB stream supports functions like web 
conferencing, selfies, security or anything that the human eye might consume. The second 
stream (IR) is consumed by machine vision for the traditional DMS safety functions, where the 
lighting is designed to be both immune to sunlight pollution as well as to see in the dark. 

Putting aside all of the complex optical challenges that RGB-IR imagers create, they also 
present new challenges in the embedding space: particularly on the Video Input and 
Preprocessing stages of the pipeline. Put simply, most chips targeted at the standalone DMS 
market have not been designed to efficiently allow for the capture, demux, and processing of 
both the RGB and IR video streams of interest from an RGB-IR sensor. This is a major 
drawback and reflective of the fact that most chips, when originally architected, didn't 
anticipate the use of these sensor types, nor how the DMS algorithms might consume them. 

To illustrate this issue and to show why this is a very important consideration when selecting 
an SoC, let's consider both streams individually and focus on the Video Input and 
Preprocessing stage of the pipeline. 

An ideal IR-only stream is typically very straightforward - machine vision wants to see and use 
an unadulterated raw video stream. An Ideal pipeline shown in Figure 3 will implement a 
Downscale Pyramid where different image scales are created on the fly. Dewarping is typically 
not needed in this part of the processing pipeline. There may be minor filtering needed in the 
front-end Video Input block depending on the sensor, but nothing complex. 

 

Figure 3: Example of Ideal IR-only Video pipeline 

An RGB stream is more complex as the pixels need to be conditioned for consumption by the 
human eye, and therefore functions like lens dewarping, sharpness enhancement, colour 
correction, masking and background blurring for privacy protection may also be required. An 
example Ideal RGB Video Input and Preprocessing Stage may look like Figure 4. 
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Figure 4: Example of Ideal RGB-only Video pipeline  

This is where things get interesting, and possibly more difficult for SoC vendors, especially 
when they do not know the dataflows required for the end application. Given that they are also 
influenced heavily by the need to build chips that service a far wider application space than 
say DMS and OMS, they tend to allow for configurable data-paths and functions - thus enter 
the programmable ISP. 

The ideal architecture shown in Figure 4 allows for maximum efficiency, but minimal flexibility 
as the dataflow is fixed. This architecture will perform all of the processing required on the fly 
(exploiting small on-chip line buffers where essential) and send the resulting image(s) into 
DDR memory at the end of the pipeline. This type of architecture minimizes the traffic on the 
DDR memory (a good thing), but as a tradeoff it can impose restrictions on the functions and 
the data-paths (maybe not so good for the SoC vendor who is trying to target other use-cases). 

At the other end of the architecture spectrum is the “shared memory” design. Using those 
same functional blocks above, the pipeline might look something like the diagram below in 
Figure 5. Note that although chip datasheets would typically put one big box here and call it 
an “ISP”, we have kept it as a functional diagram to highlight the memory transactions (trips) 
that are still necessary to achieve the processing required of the pipeline. 

 

Figure 5: Example of Alternative RGB-only Video Input Stage using Shared Memory 

The shared memory architecture allows maximum flexibility but comes at the cost of external 
memory bandwidth efficiency. The pipeline basically reads and writes images (or parts of 
images) in and out of external memory at every stage. It allows for almost any combination of 
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datapath, and if the processing elements are “programmable” then maximum flexibility is 
available. For larger SoC’s that have plenty of memory bandwidth, it is an easy decision to 
take this sort of design approach. For SoC’s and systems that are limited on memory 
bandwidth, for example small standalone DMS processors, an architecture that relies purely 
on shared memory connectivity for its ISP can be seriously problematic (even to the point of 
making chips that appear powerful on paper simply unusable for DMS solutions). It is very 
easy to consume memory bandwidth getting video in and out of the device and to “starve” the 
rest of the device, as we will demonstrate.  

Through many programs and RFQs over the years at Seeing Machines, we have had the good 
fortune of mapping our algorithms and solutions to many different SoCs and we are highly 
tuned into this problem along with many other chip architecture related issues that present 
themselves. Nearly all of the issues that we see when mapping to a given chip end up being 
associated with inefficiencies around dataflow and the suboptimal use of both on-chip and off-
chip memory. We have found that accelerators will often achieve lightning fast numerical 
operations only to let us down badly in the act of moving the data to the next stage of the 
pipeline and being forced to buffer data in external DDR memory. This is again symptomatic 
of the chip simply not being designed with the DMS-oriented pipeline configuration in mind. 

Now let’s turn these ideas into numbers and illustrate the point clearly. Table 1 highlights the 
range of memory bandwidths required to perform the same RGB-IR video input function on a 
range of SoCs targeted at the standalone DMS market. We’re using a 5MP sensor running at 
60Hz for this scenario, where half the frames are IR and the other half are RGB in an 
alternating fashion. This table and its adjacent plot visually highlight the enormous variance 
that exists purely due to the different video pipelines we have outlined above. Note how certain 
SoCs can be at least 6x worse when compared to the Ideal pipelines we’ve articulated. 

 

SOC DDR R/W 
Trips 

DDR R/W 
Bandwidth 

(MB/s) 

IDEAL 1 290.0 

SOC1 6 1800.0 

SOC2 6 2400.0 

SOC3 8 2500.0 

SOC4 4 620.0 

FOVIO Chip 1 320.0 
 

 

Table 1: Comparison of DDR B/W used for the same RGB-IR function (lower is better) 

 

So why does this matter? The answer is quite simple - we haven’t even begun the primary job 
required of the chip, which is the vision processing task, let alone fulfill other requirements 
such as video output (which itself can also be demanding of memory bandwidth).  
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This may not always be a problem depending on the chip in question and requirements of the 
DMS module (e.g. IR-only monochrome sensor without any ISP nor any H.264 encoder is 
obviously less demanding of memory bandwidth). What ultimately matters is whether the 
device has enough memory bandwidth to confidently execute the vision processing job after 
subtracting the video input and output allocations.This question is not straightforward to 
answer by any means, as there are many ways to solve the same problem and the chip 
architecture’s “suitability” when mapping the desired vision processing pipeline. 

Moving and pre-processing video in and out of a chip is generally deterministic with respect to 
the memory bandwidth requirements. Typically, it is easy to calculate and therefore allocate 
resources. The only exception is compression on the video output stage which can vary based 
on the pixel content. This is a load that needs to be pre-allocated before determining what is 
then available for the vision processing for any given chipset. A simple view of the main 
functional stages of a DMS processing pipeline is shown in Figure 6 using an example 5MP 
- 60Hz - RGB-IR sensor and Video Output with local H.264 compression at 30Hz for Full HD 
resolution of 1920 x 1080. 

 

Figure 6: Main stages of a DMS processing Pipeline 
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Table 2 below translates this into numbers and highlights the importance of looking past the 
marketing propaganda on any particular chip resource. For a DMS product, what actually 
matters is the resources remaining after all other tasks (and reserved allocations) have been 
accounted for (which is the column on the right, highlighted in pink). 

 

    Allocated BW Total Bandwidth  

 Imager Compression DDR Type 

Video Input 
BW inc. 
RGB-IR 
capture 
(MB/s) 

Video 
Output BW 

inc. 
Compressio

n (MB/s) 

Theoretical 
Max (MB/s) 

DDR 
Efficiency 

@ 60% 
(MB/s) 

Remaining 
BW (MB/s) 

SOC1 5MP RGB-IR 
@60 Hz 

H.264 1080p p-
Frame 

16 bit 
LPDDR4 

@1600MHz 
1800 350 6400 3840 1690 

SOC2 5MP RGB-IR 
@60 Hz 

H.264 1080p p-
Frame 

16 bit 
LPDDR4 

@1600MHz 
2400 350 6400 3840 1090 

SOC3 5MP RGB-IR 
@60 Hz 

H.264 1080p p-
Frame 

64 bit 
LPDDR4 

@2133MHz 
2500 350 34128 20477 17627 

SOC4 5MP RGB-IR 
@60 Hz 

H.264 1080p p-
Frame 

32 bit DDR3L 
@800MHz 620 350 6400 3840 2870 

FOVIO 
Chip 

5MP RGB-IR 
@60 Hz 

H.264 1080p p-
Frame 

32 bit DDR3L 
@533MHz 320 550 4264 2558 1688 

Table 2: Overview of the residual bandwidth available for Vision Processing 

It is interesting to note that some SoCs might have large total memory bandwidth, but it doesn't 
always equate to usable bandwidth for the DMS workload. These numbers show that there 
are two SoC’s in Table 2 where more DDR bandwidth must be assigned to the Video Input 
and Output stages for a system using a 5MP RGB-IR imager than what can be made available 
to the Vision Processing task, which is the most important job of the processor in this 
application! This is clearly not acceptable and generally rules those SoCs out, or at least 
severely limits their usability. The poor efficiency of the RGB-IR processing essentially means 
that any advantage those devices might claim on DDR bandwidth is an illusion.  

Another view of the data summarised in the table above is the following graph of Figure 7. 
When analysing the suitability of any SoC for a DMS system, the primary parameter of 
importance is the yellow section on each bar which represents the real bandwidth remaining 
that can be allocated to DMS algorithm processing. The absolute amount of DDR bandwidth 
remaining, not the percentage of total bandwidth, is all that matters in this view. The bigger 
the yellow regions, the smaller the chances of DDR bandwidth creating bottlenecks in the 
overall processing pipeline. 
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Figure 7: Comparison of some Standalone DMS SoCs’ bandwidth allocations with RGB-
IR and H.264 processing 

It must be noted that these comparisons are for a particular subset of SoCs offered in the 
market. There are bigger (and smaller) devices in different product families that offer wider 
(and narrower) memory interfaces. The specific SoCs, compared here, generally compete 
commercially in the same space and have been selected to highlight the effect of silicon 
architecture inefficiencies on low-end devices for a task they were not necessarily designed 
to efficiently perform. 

This case-study is a really good example of what can happen to an important chip resource if 
the silicon isn’t matched to the processing task. On the flipside, our analysis shows that SOC4 
has clearly been designed to match the processing task of the RGB-IR extraction with the 
bandwidth close to that of an Ideal pipeline. This has been achieved by the vendor whilst still 
allowing for significant flexibility in the ISP and providing a large amount of residual bandwidth 
for DMS workload.  
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Embedded Accelerators and Neural Networks 

Introduction to Neural Networks 
The field of machine learning, nowadays also known as deep learning, has undergone a step-
change in performance for many classes of algorithms - especially those in computer vision. 
The term “deep learning” ultimately encompasses techniques for the efficient discovery and 
encoding of relationships present in data into neural network (NN) “models”. These models 
are mathematical constructs consisting of a set of nodes (or artificial neurons) and connections 
between the nodes (or artificial synapses). Each node implements a simple mathematical 
function (or “activation” function) to be applied to the inputs and passed via the outputs to the 
next node. Networks are usually structured as layers of nodes that share a common activation 
function. The layered approach lends itself to implementations where layers are processed as 
discrete stages in a processing pipeline, from input layer, through “hidden” layers, to the final 
output layer.  

Deep-learned networks are “deep” in the sense that there may be dozens of hidden layers. 
More exotic network architectures allow connections beyond just adjacent layers or which may 
have recurrent (or cyclic) connections that allow for feedback loops and stateful memory 
effects. 

The design dimensions of a network include: (i) the type of activation function in each layer, 
(ii) scaling and threshold coefficients applied to each node’s inputs and activation function, (iii) 
the overall node and layer connectivity (or topology), (iv) the number of nodes per layer and 
number of layers overall. These design dimensions are the “free variables” in the algorithm 
development and training process. The magic of deep learning technology lies in training 
algorithms that are able to search the vast space of all the combinations of these free variables 
and with only a little data, quickly converge towards network designs which incorporate the 
relationships in the data into the NN model. Consequently, it is often the “training environment” 
that is a key ingredient in state-of-the-art deep learning technology, and considered valuable 
IP for any technology company. 

Today there are many well known “classes” of networks. These are network topologies that 
have been researched to out-perform other legacy classes (when paired with specialized 
training environments for that class). Network classes are assigned names which become well 
known in the machine learning community, (e.g. “LSTM”, “MobileNet”, “ResNet”, and many 
others).  

Over the last decade network classes have been the subject of intense research and have 
evolved quickly. This evolution is a result of the pressure for networks to (i) be trained in fewer 
compute cycles, using less or lower-quality training data, (ii) deliver superior performance 
outcomes to existing classes, whilst (iii) producing networks that are smaller and faster to 
execute, and therefore reduce the embedded processing costs. This forms a critical part of 
the Seeing Machines JGEP optimisation cycle. 

While deep learning and NNs have a long history in academic circles, they began to enter 
commercial products around a decade ago. This was the beginning of the classic technology 
disruption “S-curve” and it commenced in the fields of natural language understanding and 
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image classification for internet search engines. Custom silicon NPU acceleration for data-
centers (cloud) soon followed, including designs evolved from GPUs primarily by NVIDIA, 
custom ASIC solutions from Google, and FPGA implementations by Microsoft. These helped 
drive the initial mass adoption of “deep-learned AI” into many everyday (online) products. 

Today, deep-learned AI has largely displaced even the best classical techniques in the field 
of computer vision. “AI” algorithms are powering many new types of products, not only in the 
cloud, but at the “edge”, running locally on smartphones and some IoT devices. Toolkits for 
efficient development of NNs (such as TensorFlow, Torch, ONNX and others) are now highly 
mature and have given rise to an enormous developer community, and thereby a whole new 
class of products often referred to as “AI powered”.  

While these products are not really intelligent (they just detect patterns very well), they perhaps 
earn the “AI” moniker by being able to out-perform humans for the task of speedily extracting 
meaningful and actionable information from complex and noisy data. However, most networks 
remain highly specialized and only perform “narrow” tasks, such as face recognition. As such, 
they are more accurately termed “narrow AI” or to those that are old school, just very good 
“expert systems”. 

Cost of Processing Challenge 
Despite all their aforementioned advantages in the algorithmic space, however, NNs do not 
come without drawbacks - the most significant being a high processing demand when 
compared to classical techniques.  

We define Cost of Processing (COP) as that part of a product’s cost structure which is driven 
directly or indirectly by algorithm processing demands. COP can be a difficult value to estimate 
without actually building competing solutions, as it consists not only of the cost of additional 
silicon dedicated to performing the number-crunching, but also the dependent costs of things 
like additional PCB space, thermal and power management aspects such as capacitors, 
inductors, power-management ICs, additional board-layers, more pins, larger heatsinks, outer 
packaging materials, and any additional IP licenses (such as third-party accelerator designs). 

COP is a major barrier that limits the size of NNs, their performance and ultimately the 
proliferation of NNs into low-power, low-cost products. This barrier is due to the fact that (i) 
NNs have data-flows and operators that are unable to be efficiently executed on traditional 
Von-Neumann CPU designs such as ARM or Intel x86 cores, and (ii) generic NPUs are not 
necessarily a silver-bullet, potentially adding their own cost and power demands to any SoC. 

Memory Bandwidth and Neural Networks 
Now let’s put the previous chapter’s memory bandwidth numbers into context as one of the 
principal dimensions of the Cost of Processing. We’ll consider some common NNs used in 
embedded systems and understand what it takes from a memory bandwidth perspective to 
run a quantized model (8-bits) at a given processing rate. Note that we will explore NNs in 
more detail in the next section regarding the acceleration of their execution. 
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  Raw Memory BW (MB/s) - No Caching, 224x224 

 Data Transfered (MB) 1Hz 5Hz 10Hz 30Hz 

MobileNetV3 Large 31.4 31.4 157.0 314.0 942.0 

MobileNetV3 Small 11.1 11.1 55.3 110.7 332.0 

Resnet-50 135.7 135.7 678.5 1357.0 4070.9 

Table 3: Raw Memory Bandwidth requirements of common Neural Networks for 
different processing rates without local/internal cache, while using INT8 quantized 
models. 

Table 3 represents the worst-case scenario as it assumes an accelerator that has no local 
cache which can be called upon to relieve the DDR memory accesses. These numbers can 
be reduced a lot, sometimes by at least 50% or more, if local caches can be smartly utilized. 
This is certainly not always the case; in fact, such caches are sometimes not usable unless 
the entire network can be executed out of the cache. Quite often, given the nature of the real-
time processing in a DMS at 30fps (or sometimes higher), the networks need to be scheduled 
carefully in order to satisfy the 33 ms periodic deadline for DMS results (or even shorter 
periodic deadline when the processing rate is higher). This severely limits the possibility of 
“batching” network runs in contiguous blocks, for which many of the available accelerators 
have been optimised. Another way to appreciate this is the old adage that “throughput can be 
bought, but latency must be earned”. Accelerators are designed to maximize throughput, but 
in the process of doing so they can elongate the latency of real-time tasks and often fail to hit 
deadlines. 

Putting aside improvements to the DDR bandwidth from onboard caching, it can be easily 
seen that to run any of these networks at higher processing rates quickly starts to require 
significant memory bandwidth. Whilst Seeing Machines algorithms are not purely based on 
the networks outlined in this table, it is useful to show how easily processing at these higher 
rates can rapidly consume the resource budgets of devices in this class (it is why the Occula 
NPU and the custom networks we run on Occula were invented). There are plenty of networks 
(most actually) that do not need to run anywhere near the rates required with “tracking” 
algorithms. For example, some DMS designs have required ten or more networks to be 
implemented that execute concurrently at vastly different rates. 
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Figure 8: Relative size of bandwidth allocated to various networks at different 
processing rates 

The diagram shown in Figure 8 is a visual example where the size of each box represents the 
relative allocation of the available memory bandwidth to the different networks (separate 
colours) and their required processing rates (separate layers). The type of neural network for 
any given task is out of scope for this paper other than to say that different NN’s have varying 
performance characteristics and are therefore directly related to the KPIs of the required 
features. The algorithm requirements and performance will dictate the type of network and the 
minimum processing rates needed. The processing pipeline must ensure that each network is 
executed at no less than its required processing rate and is always able to satisfy its periodic 
deadline (i.e. batching is not an automatic option). 

Embedded NPUs 
The awkward fit of NNs to execute on conventional CPUs combined with exponentially rising 
fabrication costs at smaller transistor design nodes (in what appears to be the end of the 
Moore’s Law1 in the cost-sensitive automotive world for the foreseeable future), has led to a 
Cambrian explosion2 of Neural Processing Unit (NPU) accelerator designs over the past few 
years.  

These new NPU co-processors have transistor groupings and memory arrangements that 
attempt to optimize the execution for whatever classes of NNs the chip designers believe will 
be popular with algorithm developers. Different designs vary due to the specific niche being 
sought for the product. Some NPUs are sold as standalone co-processing chips, others are 
licensable cores. Some employ new silicon techniques such as in-memory computing using 
nano-scale resistors.  

 
1 https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/ 

2 https://en.wikipedia.org/wiki/Cambrian_explosion 

https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/
https://en.wikipedia.org/wiki/Cambrian_explosion
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Embedded NPU designs nowadays differ in the number and variety of mathematical 
operators, the precision of those operators, the way blobs of data are arranged, fetched, 
cached and propagated when the network executes, and the maximum size of the network 
that can be locally processed inside the NPU core without requiring a DDR memory access or 
a significant data transfer. Some designs also incorporate multiple processing pipelines in 
order to increase parallelism and throughput (which comes at the cost of extra silicon area of 
course).  

An Embedded NPU is simply one that is designed with the intent of executing NNs in low-cost, 
small, low-power devices “at the edge”. The constraints of low cost, size and power place 
significant limits on the NPU capability compared to designs for cloud data-centers, or 
workstations, and thus Embedded NPUs must make compromises driven by the needs of the 
specific application. 

The advantage and attraction of products being able to deploy NNs in local devices puts 
pressure on SoC companies to offer devices with an NPU acceleration option. However, this 
is where the difficulties begin for these companies. The problem is that a SoC design cycle 
from concept to release is typically 2-3 years, whereas the state-of-the-art in NN techniques 
are changing every few months. The risk that the chip designer runs is that they can very 
easily lock-in a processing architecture that does not adequately foresee the evolution of the 
state-of-the-art. So by the time the chip is released (and keeping in mind that the chip will also 
need to service the market for many years after that), the NPU design can be almost useless 
at accelerating the NNs developers wish to deploy. Here, the same issues we described in 
previous sections with regards to memory bandwidth and ISP limitations similarly apply; the 
processing pipeline either encounters an efficiency bottleneck or simply cannot execute the 
network needed by the developer. Neither is a good outcome. 

There are two approaches to NN acceleration that are evident in today’s market: (i) companies 
that design and build their own custom NPUs or (ii) those that re-badge and repurpose a 
different type of processing accelerator IP to be more compatible with the kinds of processing 
NNs need. The latter is achieved largely through refactoring of toolchains, allowing them to 
ingest NN models. For instance, DSP’s, GPUs, or Vector Processors are often wrapped in an 
“AI” marketing envelope and positioned as full-blown NPUs.  

Looking behind the curtain, we must remind ourselves that accelerators (in general) are one 
of the primary ways that SoC companies differentiate their products. Therefore it is certainly 
understandable as to why semiconductor companies employ these “wrapping” tactics. 
However, it can be very difficult for end-customers and algorithm developers to peer through 
the marketing haze. It’s an area full of traps, consisting of misleading statistics and things left 
unsaid until it’s discovered by a developer far too late, at which point the hapless customer 
finds themselves in the classic “walled garden” where the financial outlay, training and code 
commitment already made into developing with a chosen SoC means changing devices is too 
expensive and risky. 

When a developer like Seeing Machines, who needs to stay abreast of the state-of-the-art and 
develop new kinds of networks, requires an operator or network connectivity structure that the 
NPU (or whatever accelerator) was not designed to support, the result is either that the 
developer cannot take the best-in-class algorithm implementation to production or a 
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compromise in performance must be made due to processing inefficiencies that need to be 
accounted for somewhere else in the pipeline. 

In order to illustrate this point, Table 4 below shows a number of SoCs performing the same 
accelerated function for our custom Gaze Tracking task (which looks at one or both eyes on 
a driver or front-seat passenger and determines where the person is most likely to be staring). 
Of note, the Gaze Tracking task incorporates a NN with an unorthodox architecture. Also 
included in the table, for reference, is the same task executed on an A53 CPU (code fully 
optimised) along with the Occula NPU running on the FOVIO Chip. 

 HW Accelerator Advertised "TOPS" Latency (ms) 

SoC5 DSP 3.00 TOPS 7.2 ms 

SoC6 DSP 2.00 TOPS 57.3 ms 

SoC7 Custom Vision Accelerator 1.00 TOPS 9.9 ms 

SoC8 Custom Vision Accelerator 0.05 TOPS 32.6 ms 

FOVIO Chip Occula NPU @250MHz 0.03 TOPS 3.1 ms 

CPU Only 1x A53 + NEON @1.1GHz 0.003 TOPS 9.5 ms 

Table 4: Accelerated implementations of Gaze Tracker in various SoCs 

The execution latencies show how the different designs of the accelerator hardware yields an 
enormous impact on the processing efficiency outcome. Note that in this table we show latency 
in milliseconds as the most critical measure, not Tera-Operations Per Second (TOPS). We 
intentionally show the variation in TOPS numbers for the different NN Accelerators to highlight 
the danger of assuming that it's possible to use this number alone for any meaningful and 
practical resource planning. You may recall the adage that throughput (or TOPS) can be 
bought, but latency must be earned! 

For example, a 60Hz processing rate requires all the computing tasks to be finished within 
16.6ms; similarly a 30Hz processing rate requires completion within 33.2ms. To put the Gaze 
Tracker task into a wider perspective, the plot in Figure 9 below indicates the overall time 
allocation for Gaze Tracking in our pipeline with the 60Hz and 30Hz processing deadlines 
overlaid as dashed lines. 
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Figure 9: Example Gaze Tracker versus Unallocated Compute Bandwidth 

In this figure, each yellow bar indicates the remaining time-slots available for scheduling all 
other tasks in the pipeline after the Gaze Tracker. This illustrates that the goal of completing 
the task as quickly (and efficiently) as possible is what always matters. It’s all about ensuring 
that the yellow bar is as large as possible, maximising the chance that there are sufficient 
resources remaining to execute the rest of the DMS feature stack, which at time of device 
selection, may also contain customer-specific features that are yet to be developed. 

The comparison shows that there are some accelerators and chip architectures that are very 
poorly matched to this particular part of our pipeline with two of them clearly unusable and a 
third no better than the CPU. Note also that the A53+NEON core is reasonably efficient at 
running this particular processing task, largely because the Gaze Tracker workload has been 
thoroughly optimized at Seeing Machines for ARM processors (thanks in large part to the 
NEON SIMD extensions available in ARM instruction sets). 

In any standalone DMS embedded system design, the processing budget allocated to the 
overall driver monitoring engine may be as little as one A53 CPU core, requiring the full 
algorithm stack to always execute in under 33ms (considering not the average but the worst-
case execution pathways). Therefore allocating 9.5ms to this task would likely not be a great 
use of the available bandwidth (9.5ms/33.3ms = 29% of the CPU utilised). Hence, the need 
for Accelerators is clear - to offload processing from the CPU wherever possible.  

The data in Figure 9, along with the data presented earlier on the memory bandwidth for RGB-
IR processing, shows the relative performance of different SoCs for a specific task with the 
aim of highlighting that chip marketing does not reflect reality. The fact is that different silicon 
designs deal with NN processing demands in very different ways with a large range of potential 
outcomes. In some scenarios, the chip designer, or the algorithm developer might get lucky 



 

 

Page 23          The DMS Embedding Challenge 

and create a good match, but in the embedded world such a fortuitous outcome is painfully 
rare.  

In summary, embedded performance is largely about the match, or degree of fit, between 
software and hardware. For embedded NPUs, it is how well the NPU design is matched to the 
specific NN technology that is of critical importance. 

The Co-Design Approach 
At this point, it is natural to ask if a NN can be reworked to better match a specific accelerator 
design? To some degree the answer is yes, NNs can be reworked by machine learning experts 
to better fit specific accelerator designs. However, this path is by no means easy or cheap to 
do, and the outcomes are hard to predict in advance.  

A better approach is software-hardware co-design. This is a process whereby the NPU and 
the NNs are developed in lock-step, with two design teams working closely together to build a 
single optimized “system” of hardware and software. Note that this is the antithesis to the 
general-purpose NPU approach discussed earlier.  

An issue with this approach is that the NPU design will need frequent iteration to keep up with 
the evolution in the NNs. Seeing Machines chose FPGA technology for it’s FOVIO chip in 
order to be able to rapidly explore the cost vs. performance space for DMS solutions, knowing 
the market time-frames involved and also with the knowledge that we would need to deeply 
optimize the embedding in order to be competitive for standalone DMS solutions.  

FPGA technology allows for an “algorithm-first” design approach to the embedding challenge 
and to some extent, frees our AI developers to incorporate the most powerful neural network 
techniques and still have those networks run very efficiently. 

Application Specific NPUs 
The term “application specific” refers to silicon designs that are intended to serve limited and 
specific purposes, and are therefore able to avoid bloat in the design that comes from 
attempting to support other unknown applications. Taking the Co-Design Approach naturally 
leads to solutions that only do what they need to, and therefore tend to be well matched to the 
domain of the application they target. 

In contrast, a “generic” NPU is one that will be designed to serve a wide array of (often 
disparate) network architectures and operators. When chip manufacturers decide the 
requirements for their generic NPUs, the features and capabilities they end up adopting are 
guided by the state of the art in the research field and the popular networks that are being 
used by their end customers at that point in time. There are no “standards” per se when it 
comes to NNs that would make their requirements capture a straightforward process, but there 
are certainly a number of long-running threads in terms of research and innovation which 
target certain domains of application, such as resource constrained embedded systems. Two 
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recent examples are MobileNetV3 from Google3, and RegNet from Meta4 (formerly 
Facebook). 

When defining a generic NPU architecture, the challenge is to build a small and efficient silicon 
design that can anticipate the future of NNs despite the high uncertainty in what is still a rapidly 
evolving landscape of research and development in both industry and academia. Given this 
fairly early stage of the innovation cycle in NNs, chip vendors are forced to cast a wide net to 
ensure that in 2-3 years’ time, when their first silicon samples are available, the application 
domain has not seismically shifted. This of course leads to considerably larger capacities and 
capabilities that are invariably suboptimal and inefficient.  

On the other hand, application specific NPUs can be defined in a very narrow and targeted 
manner. The key decisions around what to include and what to exclude are driven by the 
algorithm design. This generally means culling the set of mathematical operators to be as well 
matched to the proprietary algorithms as possible. There is still a need for some headroom 
and flexibility in order to incorporate future changes, but that is a perfectly feasible tradeoff 
when taking the Co-Design Approach - which is what we have been doing for many years at 
Seeing Machines. A simple example is that the operational parameters of an application 
specific NPU can be made runtime programmable without growing silicon area.  

 

  

 
3 https://arxiv.org/pdf/1905.02244.pdf 
4 https://arxiv.org/pdf/2003.13678.pdf 

https://arxiv.org/pdf/1905.02244.pdf
https://arxiv.org/pdf/2003.13678.pdf
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Occula NPU 

The Motivation - Understanding Humans 
Today, products that require human interaction are designed to almost always use buttons for 
input, whether software or physical. Buttons are an extremely simple and effective interface 
solution in many situations, however anywhere there is a non-trivial interaction required 
between a machine and human there also exists the potential for buttons to become the barrier 
to using the machine. Behold the TV remote control.  

Many products have the potential to be far simpler to use if they could somehow just detect 
what the human wants or needs without the human needing to find and press the right button. 
This is simple enough in theory, but in practice, detecting what a random human might want 
or need, requires an AI that (to some degree) can interpret far more naturalistic human 
commands. 

Today we see some signs of success in voice-agent technologies, which are sophisticated 
enough to interpret human speech usefully, allowing some products to be controlled using 
voice alone. Voice is primarily good for commands, however many people feel a sense of 
discomfort issuing voice commands to a machine, and this is especially true where multiple 
people are present and who may already be talking. Voice commands are powerful, but are 
not always appropriate, and certainly not a silver bullet. Instead they simply create another 
interface option. Machine commands can also be issued by making physical gestures, using 
the hands, face and eyes. These can be used on their own, or combined with voice, to further 
enrich the interface sophistication. 

However, while many devices can be improved from having voice or gesture commands, the 
greater value comes from the machine having access to richer contextual information about 
the individual and thereby dynamically adapting the interface to the real-time context.  

We believe that context is truly the key to more intelligent machine interfaces. Context can be 
assembled from the following four sources (i) the machine’s present “state” (e.g. driver is 
attempting to enter a travel destination), (ii) the environment (e.g. a highway, road-scene, night 
etc), (iii) the person’s own digital information (e.g. their past destinations, friend’s addresses 
etc), and (iv) the person themselves. If the machine can tell if a person is frustrated, angry, 
upset, calm, overwhelmed, confused, relaxed, sleepy, sleeping, jovial, drunk, engaged in a 
task, (the list goes on and on), then it will be able to far better serve the user while needing 
fewer commands. 

Today’s world is only just beginning to witness the value that real-time human context can 
provide to next-generation HMIs. The first systems are now appearing in luxury cars, with the 
Mercedes Benz S-Class being the primary example. Here vision, audio and haptic sensory 
interfaces (used for both input and output) are placed around the driver, placing them “in the 
loop” on many interface pathways. The result is a natural feeling, highly intelligent interface 
that enormously simplifies access to an otherwise extremely broad set of signals coming from 
the vehicle’s systems and the road environment. 

In summary, Occula has been developed to address the limited application scope of not only 
DMS, but more generally of “understanding humans”. While that might sound like a very broad 
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application, it still leads to a common set of specialized NN algorithms and therefore optimized 
methods of execution and so a distinct embedded advantage can be found over more general 
purpose NPU designs. Despite being designed and built from the ground up for DMS solutions, 
the Occula NPU design when married with Seeing Machines DMS algorithm stack, may offer 
performance advantages to a far wider range of products - any product that is (i) price or power 
sensitive, and (ii) can yield an advantage from understanding contextual information about 
humans. We leave it to the reader to imagine the possibilities. 

SM-DETECT and SM-TRACK 
Understanding humans begins with detection and 
measurement of human bodies. Humans have 
evolved to be highly social animals and the biology 
of the human brain tells us that one of the most 
critical components of the human body, to “visually 
understand” or comprehend, is the face.  

This is evidenced through study of the brain region 
known as the occipital lobe5, located at the back 
of the skull which directly receives nerve impulses 
from the optic nerve. The occipital lobe contains a 
sub-region called the occipital face area6. 
Experiments by neuroscientists show that this 
appears to be a neural network cluster entirely 
dedicated to low-level detection of facial features. 

Inside the face itself, arguably the most important feature to detect is the eyes. This is because 
eyes reveal the all-important information as to where a person is looking. This cue, combined 
with the context of the scene, provides extremely valuable insight as to what another person 
might be thinking about at any given moment and is therefore a crucial component for 
advanced social interaction. In the brain, the detection of eye features is believed to be 
performed in a dedicated region known as the superior temporal sulcus7, whereas the higher-
order conversion of face and eye temporal-spatial information into emotional cues occurs in 
the amygdala and the prefrontal cortex, which also have countless other roles. 

To an embedded engineer, it appears that human brains have simply evolved dedicated NN 
“hardware” acceleration for detecting and tracking facial features. The reason for this 
evolutionary step is perhaps that facial comprehension is a processing intensive yet essential 
task when in a social context and the brain, as an organ (or computer), already consumes a 
lot of calories. Evolution appears to have selected not only for bigger brains, but for brains that 
are extremely efficient at performing the things they need to do everyday. 

Inspired partly by witnessing these specialized biological networks, Seeing Machines has 
developed similar optimized processing pathways for detecting and tracking human body 

 
5 https://en.wikipedia.org/wiki/Occipital_lobe 
6 https://en.wikipedia.org/wiki/Occipital_face_area 
7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346170/ 

https://en.wikipedia.org/wiki/Occipital_lobe
https://en.wikipedia.org/wiki/Occipital_face_area
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346170/
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parts. These functional units are the “base of a pyramid” of the DMS processing hierarchy, 
and together form the “perception” layer needed for human-machine social engagement. 

SM-DETECT is a “fast path” for detecting faces, facial features, torsos, arms, hands etc, and 
also can be trained to detect other kinds of objects which may appear near human bodies, 
such as sunglasses or phones. The algorithm methods chosen for detection are by no means 
the highest in terms of detection accuracy, but rather are a compromise between speed and 
accuracy, carefully selected to be maximally compatible with hardware acceleration and to 
minimize processing power. 

The FOVIO chip firmware executes the SM-DETECT pathway periodically to scan the scene 
for body-parts, and these detections are used to support the frame-by-frame tracking of the 
vehicle occupants. 

SM-TRACK is a similar idea. A fast-path, but for locating and tracking body-parts over groups 
of frames. This pathway takes advantage of the knowledge that body parts can only move so 
far between video frames, and performs localized detection of body-parts based on a 
prediction of where they are likely to be in the latest image, incorporating a model of the basic 
human form to do so. SM-TRACK saves the majority of processing bandwidth versus the 
standard solution of using a NN to fit a 3D (or “4D”) model to every frame of video. Once more, 
the algorithms used are derived from over fifteen years of internal evolution, leading to a 
carefully chosen compromise between speed and accuracy in the environment of a vehicle 
cabin.  

Seeing Machines makes no claim that these algorithms are the best performing in terms of 
their ability to detect and track humans in an image, but we believe that they are the best 
compromise between “good enough” tracking performance and that all important metric, the 
Cost of Processing. 

Classifying Human State 
In the human brain, complex higher order reasoning tasks are performed by the prefrontal and 
frontal cortex, which appear to be at the pinnacle of the network hierarchy and where our 
human consciousness largely resides.  

To an embedded engineer, the frontal cortex region of the brain looks somewhat like a general 
purpose NPU. This is perhaps where a large variety of different networks help us navigate the 
complex puzzle of survival in a social world, with each network consuming as input the state 
from the higher-bandwidth perception layer beneath.  

Similarly, Occula is designed to supports more general NNs, especially of the type and size 
that take results from the SM-DETECT and SM-TRACK perception layer and perform higher-
order classifications; for example, to detect a microsleep in the last two seconds of eyelid data, 
or to infer the level of drowsiness over several minutes of observation of the whole driver.  

To do this, Seeing Machines engineers surveyed the set of classifier algorithms required for a 
modern DMS, looking at operators, the model sizes, the precision of the numbers and the 
required execution time budget, and designed Occula to “best-fit” all the known combinations, 
within a silicon resource budget. 
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Occula Efficiency Outcomes 
This section examines the design efficiency of Occula against three types of tasks that 
commonly occur in DMS systems: (i) face detection, (ii) face tracking, and (iii) inference of 
MobileNet (a commonly used NN architecture). 

Benchmarking Approach 
As explained, Occula is not a generic NPU. rather it is acceleration hardware that is matched 
(or co-designed) with NN-based algorithms which, in-turn are designed to run efficiently on it. 
So it is important to think of Occula as both an NPU and a set of algorithms, which are 
indivisible. 

Therefore for an efficiency test to have meaning, it is important that we compare the Occula 
NPU+NN system and compare it to other potential NPU+NN systems, such as those that 
might be developed by competitors to Seeing Machines. 

To do this we created face-detection and face-tracking benchmark algorithms on the candidate 
NPUs that are well suited for those NPUs and which we feel would represent the development 
path taken by any expert machine-learning engineer tasked with implementing a state-of-the-
art DMS software solution on those devices. 

The idea is to compare what Occula achieves “out of the box” as an application-specific design 
vs what might be the outcome if tasked to develop face-detection and face-tracking NNs on 
any other general purpose NPU. We argue that this approach closely represents the reality of 
porting “hardware agnostic” DMS software to a random SoC, which is what our competitors 
must do. 

Face Detection Task 
For face detection, our benchmark employed a MobileNet SSD-V2 using TensorFlow, trained 
on a repository of face images. Single-Shot Detectors (SSDs) are, at the time of writing, the 
state-of-the-art for general 2D object detection using NNs. Additionally, the MobileNet NN 
architecture produces small model sizes that are commonly used in high performance 
embedded solutions. We felt this approach to be the most likely method chosen by a machine 
learning engineer developing a face detector for a DMS solution. Both SM-DETECT and the 
MobileNet SSD-V2 networks were run against 320x320 resolution images. 

Face Tracking Task 
For face tracking, our benchmark employed an open-source implementation of a 3D “face 
alignment” technique, originally presented at ECCV 2020. The paper is titled “Towards Fast, 
Accurate and Stable 3D Dense Face Alignment” and pursues maximally efficient fast real-time 
face-alignment using NN techniques. Both the ECCV paper8 and the 3DFFA_V2 GitHub 
project9 are co-authored by Jianzhu Guo10 a highly cited and respected expert in the field of 
face processing. In our benchmark, we measure the time taken for the face alignment stage, 
which is directly comparable to the work performed by SM-TRACK when applied to tracking a 

 
8 https://guojianzhu.com/assets/pdfs/3162.pdf 
9 https://github.com/cleardusk/3DDFA_V2 
10 https://scholar.google.com/citations?user=W8_JzNcAAAAJ&hl=en&oi=ao 

https://guojianzhu.com/assets/pdfs/3162.pdf
https://github.com/cleardusk/3DDFA_V2
https://scholar.google.com/citations?user=W8_JzNcAAAAJ&hl=en&oi=ao
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face. Each method was executed at the native resolution of the core algorithm models to avoid 
image-prescaling affecting the results. The 3DFFA_V2 code was run on 128x128 resolution 
images, whereas SM-DETECT processed 1280x968 resolution images. Note, this gives 
3DFFA_V2 less input pixels to process (and therefore a bandwidth advantage). 

General Purpose NN Inference Task 
For general purpose NN inferencing, the same model was executed on all target devices, 
including Occula. The network architecture was MobileNet-V3 with a 10MB model consisting 
of 8-bit quantized coefficients. The task was to perform a simple classification using 
ImageNet11 data. 

Target Devices 
For the benchmarking we intentionally chose NPUs designs that are (i) general purpose NPUs, 
(ii) considered “state of the art” for their low-power embedded performance, but which are (iii) 
not found in automotive products.  

The reason to exclude any NPUs that appear in automotive SoCs is because Seeing Machines 
also develops and supplies it’s software in automotive NPUs and the performance of those 
devices vs Occula is commercially sensitive information. In short, we do not want to trouble 
any of our SoC partners. 

For our studies, we chose the Google Coral Edge TPU12 and the NVIDIA Xavier NX13 because 
both Google and NVIDIA arguably lead the market on high-performance general-purpose NPU 
designs and have more recently released embedded versions of their chips. Both chips also 
have industry-leading tool-chains. 

Power Measurements 

Google Coral 
The Coral TPU is a pure NPU device (and not an SoC with CPUs and other power consuming 
sub-systems). The test system provided by Google operates with a Raspberry Pi v4 with a 
USB Coral TPU dongle. Measurement of the power consumed by the Coral TPU is simply a 
matter of observing the difference in the Raspberry Pi system power when the Coral TPU is 
performing the processing, versus when the Coral TPU dongle is removed. 

NVIDIA Xavier NX 
We ran the benchmark on two different sub-components of the NVIDIA Xavier NX system, (i) 
the GPU (384-core NVIDIA Volta™ GPU with 48 Tensor Cores), and (ii) the Deep Learning 
Accelerator (NVDLA Engine) with power measurements obtained on that system.. 

 

 
11 https://www.image-net.org/ 
12 https://coral.ai/products/accelerator-module 
13 https://www.nvidia.com/en-au/autonomous-machines/embedded-systems/jetson-xavier-nx/ 

https://www.image-net.org/
https://coral.ai/products/accelerator-module
https://www.nvidia.com/en-au/autonomous-machines/embedded-systems/jetson-xavier-nx/
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Benchmarking Results 

 Device 

Performance Aspect Google Coral 
Edge TPU 

NVIDIA 
Xavier NX 

GPU 

NVIDIA 
Xavier NX 

DLA 

FPGA Based 
FOVIO Chip 
with Occula 

R8.2 

ASIC or 
ASSP 

with Occula 
R8.2 

Transistor node (nm) 12 12 12 28 12 

NPU Estimated Die Area 
(mm2) 2.5 70 22 6.5 0.9 

NPU Peak Arithmetic 
Capability (TOPS) 4.0 0.8 11.0 0.013 0.026 

NPU Peak Power (Watts) 2.0 15 9 0.8 0.3 

NPU Arithmetic Efficiency 
(TOPS/Watt) 2.0 0.05 0.76 0.02 0.09 

Face Detection Task 
Efficiency 

(FPS/Watt.mm2) 
22 0.3 3.1 27 634 

Face Tracking Task 
Efficiency 

(FPS/Watt.mm2) 
132 1.2 4.2 36 644 

MobileNet Task Efficiency 
(FPS/Watt.mm2) 63 0.4 1.4 3.4 80 

Table 5: Benchmark outcomes 

Table 5 above compares design efficiency by considering (i) how fast the NPU can execute 
the task in frames-per-second (FPS), (ii) how much additional electrical energy is consumed 
by the NPU to perform the calculation (Watts) and (iii) the silicon area consumed by the NPU 
core in square millimeters (mm2). Note that for Occula, the benchmark was performed in the 
context of the FOVIO Chip which is a 28nm FPGA device, whereas the Google and NVIDIA 
devices are considered 12nm parts and therefore should be far more power efficient.  
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The column on the far right is a modelled projection of the performance outcomes if the Occula 
design is deployed into a 12nm part, which gives a better “apples-to-apples” efficiency 
comparison. The details of this model are discussed in the following section. 

An interesting outcome is that the Google TPU significantly outperforms the NVIDIA device 
for all three tasks. We note that the Google device is clearly optimized for execution of 
quantized NNs, while the NVIDIA device retains full floating point support. 

The results reveal the well understood industry phenomenon that application-specific designs 
are usually able to outperform general-purpose designs (when compared in the application-
specific field) by at least an order of magnitude. Indeed, this is why co-processors exist. 
Perhaps the deeper realization here is that while NPUs themselves are specializations away 
from more general-purpose CPUs, most NPUs (even embedded ones) remain highly 
generalized designs which can be out-performed by the application-specific co-design 
approach. 

Modelling Occula NPU Performance at 12nm 
There are three components to modelling Occula performance in various semiconductor 
technology nodes for comparisons.  

First, the processing rate measured in frames per second (FPS) of any given algorithm running 
on Occula is largely dependent on the clock frequency and the deterministic pipeline of 
Occula. While there is some variance due to memory bandwidth policies at the system level, 
this is covered by including a small safety margin.  

Second, the silicon area required by Occula depends on the number of gates and the total 
RAM bits instantiated for internal buffers and caches. These are fully determined from 
synthesis results in the ASIC design flow. 

Third, the power draw of Occula depends on the leakage properties of the technology node, 
silicon area, clock frequency and the dynamic switching activity of various sub-modules inside 
Occula. These factors and their subtle interplay are succinctly explained by Stillmaker and 
Baas14. As they point out in their paper, if we have the values for clock frequency, area and 
power at a particular node (say 22nm), then there are scaling equations we can use for 
estimating the equivalent quantities at a different node (e.g. 12nm). 

We have listed our modelling results in the right-hand column of Table 5 above (shaded in 
gray). We conclude that at the 12nm node, Occula will require 0.9 mm^2 area maximum, and 
0.3 W peak power at 125 oC junction temperature for worst-case switching activity (which is in 
fact extremely difficult to hit given the near certainty of a memory bottleneck arising at the 
system level well before this point). The performance of Occula at this node is expected to 
yield at least a 500 MHz clock frequency after taking into account silicon aging.  

It’s actually possible to increase that frequency considerably due to the way Occula is smartly 
pipelined for ease of timing-closure, but it has to be kept in balance with the speed of DDR 
memory interface because that is the precious resource in a chip (as we’ve elaborated earlier). 
If Occula is clocked excessively higher than 500 MHz then it’s likely to be waiting for data from 

 
14 https://dx.doi.org/10.1016/j.vlsi.2017.02.002  

https://dx.doi.org/10.1016/j.vlsi.2017.02.002
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the DDR memory and not actually using the silicon real estate efficiently. We discuss this topic 
further in the next section. 

Value of Silicon Real Estate 
When developing a new SoC, the most important initial consideration is the silicon area, as it 
directly correlates to the marginal unit-cost and therefore the sales price of the device. As a 
reference point, an SoC processor targeting the standalone DMS market (dual to quad A53 
class processors) may have a silicon area in the range 15-20 mm^2 at the 16nm node. This 
is a realistic estimate that we can use to illustrate the importance of being efficient with the 
silicon design and how it is utilised - which we think of as the value of silicon real estate. 

An example silicon area breakdown of a complete SoC product at 16nm is shown below in the 
pie chart of Figure 10. This simple illustration is intended to put into perspective the relative 
differences in the value of silicon utilization of the various functions within a device. In the 
figure below: the Vision Accelerator may be a custom programmable coprocessor, a DSP or 
an NPU; the Video Codec is a H.264 codec and the ISP is capable of RGB-IR processing 
along with other viewable video stream processing; the CPU subsystem has quad 64-bit cores 
(each implementing vector extensions) with 512 KB of shared L2 cache. 

 

 

Figure 10: Example silicon area breakdown at 16nm technology node 

It should be noted that there are actually three different “accelerated” subsystems in this 
example device, each with the purpose of relieving the CPU tile of computationally heavy 
workloads. These are the H.264 codec, the ISP and the Vision Accelerator. So why have these 
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items been chosen to be hardened into silicon? The answer is simple but not always obvious. 
It comes down to the following key considerations: 

1. Is the task going to be used by most applications that use the chip (i.e. it is not dead 
silicon for a large portion of customers)? 

2. Is there a clear silicon reduction advantage in hardening the function (i.e. it is a lower 
silicon cost than running on the CPU)? 

The main downside when hardening any function is that you lose flexibility. After all, software 
in a CPU is the most flexible solution possible. Generally speaking, functions that are 
“standards” based and ubiquitous are perfect candidates for hardening as there is little chance 
that the SoC manufacturer misses something in their definition - an H.264 encoder for example 
is an ideal candidate.  

Given the above breakdown of the silicon area, an insightful analysis can now be done of the 
silicon cost for frequent and real-time tasks. For instance, how efficiently is the silicon utilized 
when compressing a Full HD 1080p video stream in a hardened H.264 Encoder versus doing 
it purely in software on a CPU?  

We ran a simple experiment for the data shown below in Table 6. A hardened H.264 Encoder 
clocked at 200 MHz can keep up with a 60fps incoming video stream even though only half of 
the frames are RGB. In other words, the encoder must still be better than 16.6ms frame latency 
despite processing at 30fps because the remaining frames are IR and they will arrive at that 
same rate; otherwise the encoder becomes massively inefficient by forcing every RGB frame 
to be buffered in DDR memory first (as we discussed earlier in the paper).  

On the other hand, one A53 core clocked at 800 MHz takes 130ms to encode one frame with 
purely memory-to-memory dataflow and no blocking storage - hence it fails to meet the 30fps 
requirement altogether! We used the open-source x264 utility that has been heavily optimized 
for NEON SIMD extensions in the ARMv8 instruction set. This data demonstrates that 
hardening the standard H.264 algorithm can provide the same feature at better than 5x the 
efficiency with respect to an A53 core when it comes to weighing up the value of silicon real 
estate.  

 Area (mm^2) Latency (ms) Relative Efficiency 

H.264 Enc. @200MHz 2.4 15.6 5.2 

1x A53 (*) @800MHz 1.5 130.0 1.0 
(*) estimated size of one A53 core and cache scaled from publicly available information 
(https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53) 

Table 6: Relative Silicon Efficiency of H.264 encoding in hardware versus pure software. 
Area estimate is for 16nm technology node 

Now let’s focus on the Gaze Tracking task (which executes our proprietary SM_TRACK 
network) for the same analysis related to Occula NPU. Table 7 compares an A53 core (with 
NEON SIMD extensions) executing the SM_TRACK network to an Occula NPU running the 
same workload. We’re comparing the one-shot latency for each and then scaling that latency 
ratio to the silicon area of an A53 core to derive a relative efficiency (same as Table 6). What 

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53
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this shows again is how efficient a hardened Occula is at executing our Gaze Tracking 
algorithm with respect to a fully optimized software version running on an A53 core.  

 Area (mm^2) Latency (ms) Relative Efficiency 

Occula @ 500MHz 1.0 1.6 12.3 

1x A53 (*) @800MHz 1.5 13.1 1.0 
(*) estimated size of one A53 core and cache scaled from publicly available information 
(https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53) 

Table 7: Relative Silicon Efficiency of Gaze Tracker (SM_TRACK) for Occula with 
respect to an A53 core. Area estimate is for 16nm technology node 

The data above makes it clear that Occula running at 500 MHz (the typical clock for an ASIC 
implementation) is making at least 12x better use of the silicon real estate than an A53 core 
running at 800 MHz when it comes to a real-time task like Gaze Tracking. This ratio is to be 
expected and the relative performance, along with previous data illustrated in this paper, show 
how versatile an A53 core with NEON SIMD extensions actually is as an embedded processor. 
It is worth noting that both the A53 core and the Occula NPU can certainly perform multiple 
other tasks as per their designed architectures. The point still remains that critical real-time 
workloads which burden the CPU should be accelerated directly in silicon for maximum 
efficiency.  

  

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53
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Concluding Remarks 
Building a DMS for the automotive industry is as much an art as it is a science. There are 
multiple strategies that can be deployed, and considerable uncertainty associated with each 
of them. For many years, Seeing Machines has been at the forefront of designing DMS 
solutions that satisfy the most demanding requirements and market pressures for low cost, 
low power, high performance and high volume applications.  

Our strategy for navigating this landscape of art and science has been centred on solving the 
embedding challenge by deploying the co-design approach. Now in its eighth generation, we 
have crafted the Occula NPU to optimise DMS technology, based on careful analyses and 
insights gained from our own algorithm inventions and collective expertise in this field.  

Looking ahead to the future possibilities in this segment of the automotive market, and also 
fanning out to other industries that adopt DMS technology as a matter of necessity - we see 
opportunities emerging for pushing the cutting edge of this technology much further. We have 
a world class team to exploit those opportunities, thanks to our deep knowledge and skills 
(spanning the full stack from top to bottom) when it comes to designing DMS products.  
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